Empirical Data Assimilation for Merging Total Electron Content Data with Empirical and Physical Models

نویسندگان

چکیده

An accurate estimation of ionospheric variables such as the total electron content (TEC) is important for many space weather, communication, and satellite geodetic applications. Empirical physics-based models are often used to determine TEC in these However, it known that cannot reproduce all variability due various reasons their simplified model structure, coarse sampling inputs, dependencies calibration period. Bayesian-based data assimilation (DA) techniques improving model’s performance, but computational cost considerably large. In this study, first, we review available DA upper atmosphere assimilation. Then, will present an empirical decomposition-based (DDA), based on principal component analysis ensemble Kalman filter. DDA reduces complexity previous implementations. Its performance demonstrated by updating orthogonal functions NeQuick TIEGCM using rapid global ionosphere map (GIM) products observation. The new models, respectively, called ‘DDA-NeQuick’ ‘DDA-TIEGCM,’ then predict values next day. Comparisons forecasts with final GIM (that after 11 days) represent average $$42.46\%$$ $$31.89\%$$ root mean squared error (RMSE) reduction during our test period, September 2017.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Merging expert and empirical data for rare event frequency estimation: Pool homogenisation for empirical Bayes models

Empirical Bayes provides one approach to estimating the frequency of rare events as a weighted average of the frequencies of an event and a pool of events. The pool will draw upon, for example, events with similar precursors. The higher the degree of homogeneity of the pool, then the Empirical Bayes estimator will be more accurate. We propose and evaluate a new method using homogenisation facto...

متن کامل

MODELS Data Assimilation ( Physical / Interdisciplinary )

Data assimilation is a novel, versatile methodology for estimating oceanic variables. The estimation of a quantity of interest via data assimilation involves the combination of observational data with the underlying dynamical principles governing the system under observation. The melding of data and dynamics is a powerful methodology which makes possible efRcient, accurate, and realistic estima...

متن کامل

validation of empirical and semi-empirical net radiation models versus observed data for cold semi-arid climate condition

introduction: solar net radiation (rn) is one of the most important component which influences soil heat flux, evapotranspiration rate and hydrological cycle. this parameter (rn) is measured based on the difference between downward and upward shortwave (sw) and longwave (lw) irradiances reaching the earth’s surface. field measurements of rn are scarce, expensive and difficult due to the instrum...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Empirical Modeling of the Total Electron Content of the Ionosphere

With the appearance of such satellite systems as GPS, GLONASS, Galileo, and others, the total electron content TEC measured by means of navigational satellites became a key parameter characterizing a state of the ionized space. In turn, functioning of navigational and telecommunication systems needs models of TEC for an estimation of accuracy of positioning, for the short-term and long-term pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Surveys in Geophysics

سال: 2023

ISSN: ['1573-0956', '0169-3298']

DOI: https://doi.org/10.1007/s10712-023-09788-7